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We theoretically analyze the effect of electron-electron interactions on Aharonov-Bohm �AB� current oscil-
lations in ring-shaped systems with metallic quantum dots pierced by external magnetic field. We demonstrate
that electron-electron interactions suppress the amplitude of AB oscillations IAB at all temperatures down to
T=0, and we formulate quantitative predictions which can be verified in future experiments. We argue that the
main physical reason for such interaction-induced suppression of IAB is electron dephasing, while Coulomb
blockade effects remain insignificant in the case of metallic quantum dots considered here. We also emphasize
a direct relation between our results and the so-called P�E� theory describing tunneling of interacting electrons.
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I. INTRODUCTION

Aharonov-Bohm �AB� oscillations of conductance as a
function of the magnetic flux � piercing the system represent
one of the fundamental properties of meso- and nanoscale
conductors which is directly related to quantum coherence of
electrons.1 Coherent electrons propagating along different
paths in multiply connected conductors, such as, e.g., metal-
lic rings, can interfere. Such interference effect results in a
specific quantum contribution to the system conductance �G.
Threading the ring by an external magnetic flux �, one can
control the relative phase of the wave functions of interfering
electrons, thus changing the magnitude of �G as a function
of �. The dependence �G��� turns out to be periodic with
the fundamental period equal to the flux quantum �0=hc /e.

It is important to emphasize that the phase of the electron
wave function is sensitive to its particular path. In diffusive
conductors electrons can propagate along very many differ-
ent paths, hence picking up different phases. Averaging over
these �random� phases or, equivalently, over disorder con-
figurations yields the amplitude of AB oscillations �G���
with the period �0 to vanish in diffusive conductors.1 There
exists, however, a special class of electron trajectories in
which interference is not sensitive to disorder averaging.
These are all pairs of time-reversed paths which are also
responsible for the phenomenon of weak localization �WL�.2
In multiply connected disordered conductors interference be-
tween these trajectories gives rise to nonvanishing AB oscil-
lations with the principal period �0 /2. Such oscillations will
be analyzed below in this paper.

It is well known that various kinds of interactions, such as
electron-electron and electron-phonon interactions, electron
scattering on magnetic impurities, etc., can lead to decoher-
ence of electrons, thus reducing their ability to interfere. Ac-
cordingly, AB oscillations should be sensitive to all these
processes and can be used as a tool to probe the fundamental
effect of interactions on quantum coherence of electrons in

nanoscale conductors. Recently it was demonstrated3–5 that
the effect of quantum decoherence by electron-electron inter-
actions can be conveniently studied employing the model of
a system of coupled quantum dots �or scatterers�. This model
might embrace essentially all types of disordered conductors
and allows for a straightforward nonperturbative treatment of
electron-electron interactions. It also allows one to establish
a direct and transparent relation4,5 between the problem of
quantum decoherence by electron-electron interactions and
the so-called P�E� theory.6,7 See also Ref. 8 for an earlier
discussion of this important point. In this paper we employ a
similar model in order to study the effect of electron-electron
interactions on AB oscillations in disordered nanorings.

The structure of our paper is as follows. In Sec. II we
define our model and outline our general real time path-
integral formalism employed in this work. Section III is de-
voted to a detailed derivation of the effective action for our
problem in terms of fluctuating Hubbard-Stratonovich fields
mediating electron-electron interactions. With the aid of this
effective action we then evaluate Aharonov-Bohm conduc-
tance of the ring in the presence of electron-electron interac-
tions. This task is accomplished in Sec. IV. A brief discussion
of our results is presented in Sec. V. Some technical details
of disorder averaging are relegated to Appendixes A and B.

II. MODEL AND BASIC FORMALISM

Below we will analyze the system depicted in Fig. 1. The
structure consists of two chaotic quantum dots �L and R�
characterized by mean level spacings �L and �R. Here we
will restrict our attention to the case of metallic quantum
dots with �L,R being the lowest-energy parameters in the
problem. These dots are interconnected via two tunnel junc-
tions J1 and J2 with conductances Gt1 and Gt2 forming a
ring-shaped configuration as shown in Fig. 1. The left and
right dots are also connected to the leads �LL and RL�, re-
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spectively, via the barriers JL and JR with conductances GL
and GR. We also define the corresponding dimensionless
conductances of all four barriers as gt1,2=Gt1,2Rq and gL,R
=Gt1,2Rq, where Rq=2� /e2 is the quantum resistance unit.
These dimensionless conductances are related to the barrier
channel transmissions Tk via the standard formula g=2�kTk,
where the sum is taken over all conducting channels in the
corresponding barrier and an extra factor of 2 accounts for
the electron spin.

For the sake of convenience in what follows we will as-
sume that dimensionless conductances gL,R are much larger
than unity, while the conductances gt1 and gt2 are small as
compared to those of the outer barriers; i.e.,

gL,gR � 1,gt1,gt2. �1�

The whole structure is pierced by the magnetic flux �
through the hole between two central barriers in such way
that electrons passing from left to right through different
junctions acquire different geometric phases. Applying a
voltage across the system one induces the current which
shows AB oscillations with change in the external flux �.

The system depicted in Fig. 1 is described by the effective
Hamiltonian

Ĥ = �
i,j=L,R

CijV̂iV̂ j

2
+ ĤLL + ĤRL + �

j=L,R
Ĥ j + T̂L + T̂R + T̂ ,

�2�

where Cij is the capacitance matrix, V̂L�R� is the electric po-
tential operator on the left �right� quantum dot,

ĤLL = �
�=↑,↓

�
LL

d3r�̂�,LL
† �r��ĤLL − eVLL��̂�,LL�r� ,

ĤRL = �
�=↑,↓

�
RL

d3r�̂�,RL
† �r��ĤRL − eVRL��̂�,RL�r�

are the Hamiltonians of the left and right leads, VLL,RL are the
electric potentials of the leads fixed by the external voltage
source,

Ĥ j = �
�=↑,↓

�
j

d3r�̂�,j
† �r��Ĥj − eV̂ j��̂�,j�r�

defines the Hamiltonians of the left �j=L� and right �j=R�
quantum dots, and

Ĥj =
�p̂� −

e

c
A��r��2

2m
− � + Uj�r�

is the one-particle Hamiltonian of electron in jth quantum
dot with disorder potential Uj�r�. Electron transfer between
the left and the right quantum dots will be described by the
Hamiltonian

T̂ = �
�=↑,↓

�
J1+J2

d2r�t�r��̂�,L
† �r��̂�,R�r� + c.c.� .

Here the integration runs over the total area of both tunnel

barriers J1 and J2. The Hamiltonian T̂L�R� describing electron
transfer between the left dot and the left lead �the right dot
and the right lead� is defined analogously and are omitted
here.

Before we proceed with our analysis the following two
remarks are in order. First, we point out that within our ap-
proach the effect of electron-electron interactions is ac-

counted for by the voltage operators V̂L,R in effective Hamil-
tonian �2�. In order to avoid misunderstandings we would
like to emphasize that this approach is fully equivalent to one
employing the usual Coulomb interaction term in the initial

Hamiltonian of the system. The operators V̂L,R corresponding
to fluctuating potentials of the left and right dots emerge as a
result of the exact Hubbard-Stratonovich decoupling of the
Coulomb term containing the product of four electron opera-
tors. This is a standard procedure �described in detail, e.g., in
Ref. 6 and elsewhere� which is bypassed here for the sake of
brevity.

Second, we note that in Ref. 3 we have studied weak
localization effects in a system of coupled quantum dots
within the framework of the scattering matrix formalism
combined with the nonlinear 	 model. However, in order to
incorporate interaction effects into our consideration—
similarly as in Refs. 4 and 5—it will be convenient for us to
describe interdot electron transfer within the tunneling
Hamiltonian approach, as specified above. For clarity let us
briefly recapitulate the relation between these two ap-
proaches. For this purpose we define the matrix elements

tlm= 	l
T̂
m� between the lth wave function in the left dot and
mth wave function in the right dot. Electron transfer between
these dots can then be described by a set of eigenvalues of
this matrix t̃k, where, as above, the index k labels the con-
ducting channels. These eigenvalues are related to the barrier
channel transmissions Tk as9

Tk =
4�2
t̃k
2/�L�R

�1 + �2
t̃k
2/�L�R�2
. �3�

This equation allows us to keep track of the relation between
two approaches at every stage of our calculation.

We now proceed employing the path-integral Keldysh
technique. The time evolution of the density matrix of our
system is described by the standard equation

L RLL RL
J

J

J

J

L
R

1

2

Ф

FIG. 1. The ring-shaped quantum dot structure under
consideration.
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̂�t� = e−iĤt
̂0eiĤt, �4�

where Ĥ is given by Eq. �2�. Let us express the operators

e−iĤt and eiĤt via path integrals over the fluctuating electric
potentials Vj

F,B defined, respectively, on the forward and
backward parts of the Keldysh contour:

e−iĤt =� DVj
FT exp�− i�

0

t

dt�Ĥ�Vj
F�t���
 ,

eiĤt =� DVj
BT̃ exp�i�

0

t

dt�Ĥ�Vj
B�t���
 . �5�

Here T exp �T̃ exp� stands for the time-ordered �-antiordered�
exponent and the Hamiltonians Ĥ�Vj

F�t��� and Ĥ�Vj
B�t��� are

obtained from the original Hamiltonian �2� if one replaces

the operators V̂ j�t�, respectively, with the fluctuating voltages
Vj

F�t�� and Vj
B�t��.

Let us define the effective action of our system,

iS�VF,VB� = ln�tr�T exp�− i�
0

t

dt�Ĥ�Vj
F�t���


� 
̂0T̃ exp�i�
0

t

dt�Ĥ�Vj
B�t���
�� . �6�

Since the operators Ĥ�Vj
F�t��� and Ĥ�Vj

B�t��� are quadratic in
the electron creation and annihilation operators, it is possible

to integrate out the fermionic variables and to rewrite the
action in the form

iS = iSC + iSext + 2Tr ln�Ǧ−1� . �7�

Here SC is the standard term describing charging effects, Sext

accounts for an external circuit, and Ǧ−1 is the inverse
Green-Keldysh function of electrons, moving in fluctuating
voltage field. It has the following matrix structure:

Ǧ−1 =�
ĜLL

−1 T̂L 0 0

T̂L
† ĜL

−1 T̂ 0

0 T̂† ĜR
−1 T̂R

0 0 T̂R
† ĜRL

−1
� . �8�

Here each quantum dot as well as two leads is represented by
the 2�2 matrix in the Keldysh space:

Ĝi
−1 = �i�t − Ĥi + eVi

F 0

0 − i�t + Ĥi − eVi
B
� . �9�

Tunneling blocks have the following structure in Keldysh
space:

T̂L,R =�− �
JL,R

tL,R�r����r� − r�dr� 0

0 �
JL,R

tL,R�r����r� − r�dr�� , �10�

T̂ =�− �
J1+J2

t�r����r� − r�dr� 0

0 �
J1+J2

t�r����r� − r�dr�� . �11�

III. EFFECTIVE ACTION

In what follows it will be convenient for us to remove the
fluctuating voltage variables and the vector potential from
the bare Green’s functions. This is achieved by performing a
unitary transformation under the trace in Eq. �7�. As a result
we find

T̂ = T̂1e−i�g
�1�

+ T̂2e−i�g
�2�

, �12�

T̂l =�− ei�F�
Jl

t�r����r� − r�dr� 0

0 ei�B�
Jl

t�r����r� − r�dr�� .

�13�

Here we introduced the fluctuating phase differences
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�F,B�t� = e�t

d
�VR
F,B�
� − VL

F,B�
�� �14�

defined on the forward and backward parts of the Keldysh
contour as well as the geometric phases

�g
�1,2� =

e

c
�

L

R

dx�A��x� , �15�

where the integration contour starts in the left dot, crosses
the first ��g

�1�� or the second ��g
�2�� junction, and ends in the

right dot. The difference between these two geometric phases
is equal to

�g
�1� − �g

�2� = 2��/�0, �16�

where � is the magnetic flux threading our system.
Let us now expand the exact action iS �Eq. �7�� in powers

of T̂. Keeping the terms up to the fourth order in the tunnel-
ing amplitude, we obtain

iS � iSC + iSext + iSL + iSR − 2tr�ĜLT̂ĜRT̂†�

− tr�ĜLT̂ĜRT̂†ĜLT̂ĜRT̂†� + ¯ . �17�

The terms iSL,R define the contributions of the isolated dots
�which are of no interest for us here�, the second-order terms
�t2 yield the well-known Ambegaokar-Eckern-Schön �AES�
action6 iSAES, and the fourth-order terms �t4 account for the
weak localization correction to the system conductance.4,5

Let us first analyze the AES action. Performing averaging
of this action over disorder in each dot separately as well as
averaging of tunneling amplitudes with the correlation func-
tion,

t�x�t�y� =
gt�x�

8�2NLNR
��x − y� , �18�

we arrive at the following result:

iSAES = −� dt1dt2�
J1+J2

dx
gt�x�

4�2NLNR
�

i,j=F,B
ĜL

ij�xt1;xt2�

��− 1� jei�j�t2�ĜR
ji�xt2;xt1��− 1�ie−i�i�t1�, �19�

where the convention �−1�F=−1, �−1�B=1 is implied. This
AES contribution to the action is described by the standard
diagram depicted in Fig. 2�a�. We observe that after disorder
averaging, AES action �19� becomes totally independent of

the magnetic flux. Hence, this part of the action does not
account for the AB effect investigated here.

In order to evaluate the contribution sensitive to the mag-
netic flux �, it is necessary to analyze the last term in Eq.
�17�. Averaging over realizations of transmission amplitudes
yields two types of terms illustrated by the diagrams in Figs.
2�b� and 2�c�. It is straightforward to check that only the
contribution generated by diagram �c� depends on the exter-
nal magnetic flux, while diagram �b� does not depend on �.
On top of that, the terms originating from diagram �b� turn
out to be parametrically small for metallic quantum dots con-
sidered here. This observation will be justified in Appendix
A.

It follows from the above arguments that only the diagram
in Fig. 2�c� is responsible for the AB effect in our system. Its
contribution to the action reads

iS� = − �
m,n=1,2

e2i��g
�n�−�g

�m��� dt1dt2dt3dt4

��
Jn

dx�
Jm

dy
gt�x�gt�y�
64�4NL

2NR
2

� �
i,j,k,l=F,B

ĜL
ij�xt1;yt2��− 1� jei�j�t2�

�ĜR
jk�yt2;xt3��− 1�ke−i�k�t3�

� ĜL
kl�xt3;yt4��− 1�lei�l�t4�

�ĜR
li�yt4;xt1��− 1�ie−i�i�t1�. �20�

Since ĜL,R are the equilibrium Green-Keldysh functions of
the dots, they can be expressed via retarded �GR� and ad-
vanced �GA� Green’s functions in the standard manner:

ĜL,R�x1t1;x2t2� =� dt�GL,R
R �x1t1;x2t�F̂1�t − t2�

− F̂2�t1 − t�GL,R
A �x1t;x2t2�� , �21�

where

F̂1�t� = �h�t� − f�t�
h�t� − f�t�

�, F̂2�t� = �− f�t� − f�t�
h�t� h�t�

� . �22�

Here f�t�=�f�E�dE /2� is the Fourier transform of the Fermi
function f�E�= �exp�E /T�+1�−1 and h�t�=��t�− f�t�.

What remains is to combine Eqs. �21� and �20� and to
average the latter over disorder. This procedure amounts to
evaluating the averages of the products of retarded and ad-
vanced Green’s functions in each dot separately. Such aver-
aging can be conveniently accomplished either by means of
the diagram technique or with the aid of the nonlinear 	
model. The corresponding calculation is presented in Appen-
dix A. It yields �i=L ,R�

	Gi
R�x1t1;x2t2�Gi

R�x3t3;x4t4��d

= 	Gi
R�x1t1;x2t2��d	Gi

R�x3t3;x4t4��d, �23�

FIG. 2. Diagrammatic representations of different contributions
originating from expansion of the effective action in powers of the
central barrier transmissions: �a� second-order �AES� terms and ��b�
and �c�� different fourth-order terms.
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	Gi
A�x1t1;x2t2�Gi

A�x3t3;x4t4��d

= 	Gi
A�x1t1;x2t2��d	Gi

A�x3t3;x4t4��d, �24�

	Gi
R�x1t1;x2t2�Gi

A�x3t3;x4t4��d

= 	Gi
R�x1t1;x2t2��d	Gi

A�x3t3;x4t4��d

+ 2�Ni��
x1 − x4
���
x2 − x3
�

� Di�t1 − t2;
x1 + x4

2
,
x2 + x3

2
���t1 − t2 + t3 − t4�

+ 2�Ni��
x1 − x3
���
x2 − x4
�

� Ci�t1 − t2;
x1 + x3

2
,
x2 + x4

2
���t1 − t2 + t3 − t4� ,

�25�

where DL,R�t ;x ,y� and CL,R�t ;x ,y� are the diffusons and the
Cooperons in the left and right dots and ��r�
=e−r/2l sin kFr /kFr. Substituting these averages into action
�20� it is straightforward to observe that only the terms con-
taining the product of two Cooperons yield the contribution
which depends on the magnetic flux �. This part of the ac-
tion takes the form

iS�
WL = − i �

m,n=1,2
e2i��g

�n�−�g
�m��� d
1d
2� dt1dt2dt3dt4�

Jn

dx�
Jm

dy
gt�x�gt�y�
4�2NLNR

� CL�
1;y,x�CR�
2;x,y�ei��+�t2�−�+�t3�+�+�t4�−�+�t1�� sin
�−�t1�

2

� �h�t1 − t2 − 
1�ei��−�t2�/2� + f�t1 − t2 − 
1�e−i��−�t2�/2��

� �h�t2 − t3 − 
2�e−i��−�t3�/2�f�t3 − t4 + 
1� − f�t2 − t3 − 
2�ei��−�t3�/2�h�t3 − t4 + 
1��

� �ei��−�t4�/2�f�t4 − t1 + 
2� + e−i��−�t4�/2�h�t4 − t1 + 
2�� + �L ↔ R,�� → − ��� , �26�

where we defined the “classical” and the “quantum” compo-
nents of the fluctuating phase:

�+�t� =
�F�t� + �B�t�

2
, �−�t� = �F�t� − �B�t� . �27�

The above expression for the action S�
WL Eq. �26� fully ac-

counts for coherent oscillations of the system conductance in
the lowest nonvanishing order in tunneling. It is important to
emphasize that no additional approximations were employed
during its derivation and, in particular, the fluctuating phases
are exactly accounted for. We will make use of this fact in
Sec. IV while considering the effect of electron-electron in-
teractions on AB oscillations in the system under consider-
ation.

IV. CURRENT OSCILLATIONS

Let us now evaluate the current I through our system. For
this purpose we will employ a general formula,

I = − e� D2���S��+,�−�
��−�t�

eiS��+,�−�. �28�

Substituting the total effective action into this formula we
arrive at the result for the current which can be split into two
terms I= I0+�I, where I0 is the flux-independent contribution
and �I is the quantum correction to the current sensitive to
the magnetic flux �. This correction is determined by the
action iS�

WL, i.e.,

�I = − e� D2��
�S�

WL��+,�−�
��−�t�

eiS��+,�−�. �29�

Below we will only be interested in finding quantum correc-
tion �29�.

In order to evaluate the path integral over the phases ��

in Eq. �29�, we note that the contributions SC and Sext in Eq.
�17� are quadratic in the fluctuating phases provided our ex-
ternal circuit consists of linear elements. Other contributions
to the action are, strictly speaking, non-Gaussian. However,
in the metallic limit �1� phase fluctuations can be considered
small down to exponentially low energies,10,11 in which case
it suffices to expand both contributions up to the second
order ��. Moreover, this Gaussian approximation becomes
exact12 in the limit of fully open left and right barriers with
gL,R�1. Thus, in metallic limit �1� integral �29� remains
Gaussian at all relevant energies and can easily be per-
formed.

This task can be accomplished with the aid of the follow-
ing correlation functions:

	�+�t�� = eVt, 	�−�t�� = 0, �30�

	��+�t� − �+�0���+�0�� = − F�t� , �31�

	�+�t��−�0� + �−�t��+�0�� = 2iK�
t
� , �32�

	�+�t��−�0� − �−�t��+�0�� = 2iK�t� , �33�
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	�−�t��−�0�� = 0, �34�

where the last relation follows directly from the causality
principle.13 Here and below we define V=VRL−VLL to be the
transport voltage across our system.

Substituting AB action �26� into Eq. �29� one arrives at
the expression containing six different phase averages listed
in Appendix B. All these averages in Eqs. �B1�–�B6� are
expressed in terms of two real correlation functions F�t�
= 	��̂�t�− �̂�0��2� /2 and K�t�= i	��̂�0� , �̂�t��� /2 defined above
in Eqs. �31� and �32�. Note that these correlation functions
are well familiar from the so-called P�E� theory6,7 describing
electron tunneling in the presence of an external environment
which can also mimic electron-electron interactions in me-
tallic conductors. They are expressed in terms of an effective
impedance Z��� “seen” by the central barriers J1 and J2,

F�t� = e2� d�

2�
coth

�

2T
R�Z����

1 − cos��t�
�

, �35�

K�t� = e2� d�

2�
R�Z����

sin��t�
�

. �36�

Further evaluation of these correlation functions for our sys-
tem is straightforward and yields

F�t� �
4

g
�ln� sinh��Tt�

�T
RC
� + �� , �37�

K�t� �
2�

g
sgn�t� , �38�

where we defined g=4� /e2Z�0� and ��0.577 is the Euler
constant. Neglecting the contribution of external leads
�which can be trivially restored if needed� and making use of
inequality �1�, we obtain g�2gLgR / �gL+gR�.

We observe that while F�t� grows with time at any tem-
perature including T=0, the function K�t� always remains
small in the limit g�1 considered here. As we demonstrate
in Appendix B, the correlation function F�t� should be fully
kept in the exponent in Eqs. �B1�–�B6�, while the correlator
K�t� can be safely ignored in the leading order in 1 /g. Then
combining all terms we observe that the Fermi function
f�E�—though present in effective action �26�—drops out
from the final expression for the quantum correction to the
current which takes the form

�I��� = − �
m,n=L,R

e2Ve2i��g
�n�−�g

�m��

8�3NLNR
� d
1d
2

��
Jn

dx�
Jm

dygt�x�gt�y�

� CL�
1;y,x�CR�
2;x,y�e−2F�
1�−2F�
2�+F�
1−
2�+F�
1+
2�.

�39�

We observe that the amplitude of AB oscillations is affected
by the electron-electron interaction only via the correlation
functions for the classical component of the Hubbard-
Stratonovich phase �+. Both the correlators containing the

quantum phase �− and the Fermi function f�E� enter only in
the next order in 1 /g which defines weak Coulomb correc-
tion to �I ignored here. For more details on this point we
refer the reader to Refs. 4 and 5.

Result �39� can also be rewritten as

�I��� = − IAB��� − IWL1 − IWL2, �40�

where the first �flux-dependent� term in the right-hand side
explicitly accounts for AB oscillations and reads

IAB��� = IAB cos�4��/�0� , �41�

while the last two terms IWL1,2 represent the remaining part
of the quantum correction to the current which does not de-
pend on �.

Already at this stage we would like to clarify the relation
between our present results for AB oscillations and those for
WL correction to conductance.4 In order to derive Eq. �39�
we have evaluated the contributions of all processes illus-
trated by the diagrams in Figs. 2�b� and 2�c� and identified
terms sensitive to the magnetic field which were not consid-
ered in Ref. 4. In this way we have obtained the AB current
IAB��� in Eqs. �40� and �41� which represents our main re-
sult to be analyzed below. The two remaining terms in Eq.
�40� are the WL corrections already evaluated in Ref. 4. To-
ward the end of this section we will explicitly specify the
relation between all three contributions to quantum correc-
tion �40�.

Let us evaluate the amplitude of AB oscillations IAB for
the system with two identical quantum dots with volume V,
dwell time 
D, and dimensionless conductances gL=gR�g
=4� /�
D, where �=1 /VN is the dot mean level spacing and
N is the electron density of states. In this case the Cooperons
take the form

CL�t;x,y� = CR�t;x,y� =
��t�
V

e−t/
D. �42�

Defining dimensionless conductances of central barriers as
gt1,2=�J1,2

gt�x�dx, we obtain

IAB =
e2gt1gt2�2V

4�3 �
0

�

d
1d
2

�e−�
1+
2�/
D−2F�
1�−2F�
2�+F�
1−
2�+F�
1+
2�. �43�

In the absence of electron-electron interactions �F�
�→0�
this formula yields

IAB
�0� =

4e2gt1gt2V

�g2 . �44�

In order to account for the effect of interactions we need to
specify the effective impedance Z���. Its real part takes the
form

RZ��� =
4�

e2g
� 
2


RC
2

1

�2
2 + 1
+

�����

D + 
RC

� , �45�

where 1 /
=1 /
D+1 /
RC, 
RC=� /gEC is the RC time, and
EC is an effective charging energy of our system. Equation
�43� demonstrates that electron-electron interactions always

SEMENOV, GOLUBEV, AND ZAIKIN PHYSICAL REVIEW B 79, 115302 �2009�

115302-6



tend to suppress the amplitude of AB oscillations IAB below
its noninteracting value �44�. Combining Eqs. �37� and �45�
with Eq. �43� at high enough temperatures we obtain

IAB

IAB
�0� = �e−�8�/g� �2�T
RC�8/g

1 + 4�T
D/g
, 
D

−1 � T � 
RC
−1

1

2
D
�g
RC

T
�1/2

, 
RC
−1 � T , � �46�

while in the low-temperature limit we find

IAB

IAB
�0� = e−�8�/g��2
RC


D
�8/g

, T � 
D
−1. �47�

The latter result demonstrates that interaction-induced sup-
pression of AB oscillations in metallic dots with 
RC�
D
persists down to T=0.

The ratio IAB / IAB
�0� was also evaluated numerically as a

function of temperature at different values of g. The corre-
sponding results are presented in Fig. 3. We observe that—in
accordance with the above analytic expressions—the ratio
IAB / IAB

�0� grows with decreasing T as a power law and finally
saturates to a constant value smaller than unity at T�1 /
D.
The suppression of AB oscillations—both at higher tempera-
tures and at T→0—clearly depends on the interaction
strength which is controlled by the parameter 1 /g in our
model. Figure 4 demonstrates the dependence of IAB / IAB

�0� on
g in the limit of zero temperature and for 
D /
RC=10. While
at moderate values of g�10–20 interaction-induced sup-
pression of IAB remains pronounced down to T=0, at weaker
interactions �g�100� this effect becomes less significant and
is merely important at higher temperatures; cf. Fig. 3.

In order to complete our analysis let us briefly address
additional quantum corrections to the current IWL1,2 in Eq.
�40�. Although these terms do not depend on � and, hence,
are irrelevant for AB oscillations, they allow one to establish
a direct and transparent relation between the Aharonov-
Bohm effect studied here and the phenomenon of weak lo-

calization in systems of metallic quantum dots with electron-
electron interactions.4,5 With the aid of Eq. �39� one easily
finds

IWL1

IAB
=

gt1

2gt2
,

IWL2

IAB
=

gt2

2gt1
. �48�

Combining this equation with the above results for IAB, we
immediately identify the terms IWL1 and IWL2 as weak local-
ization corrections to the current4,5 originating from the two
central barriers in our structure. In addition, in the absence of
the magnetic field �=0 the total quantum correction to the
current �I�0� �Eq. �40�� exactly coincides with the weak lo-
calization correction to the current for two connected in se-
ries metallic quantum dots4,5 provided the two central barri-
ers in Fig. 1 are viewed as a composite tunnel barrier with
total dimensionless conductance gt1+gt2.

V. CONCLUDING REMARKS

The established relation between our present results and
those obtained in Refs. 4 and 5 helps to clarify the main
physical reason for the effect of interaction-induced suppres-
sion of AB oscillations in our structure. In full analogy with
the weak localization correction4,5 both at nonzero tempera-
tures and T=0, this suppression is due to electron dephasing
by electron-electron interactions. This decoherence effect re-
duces the electron ability to interfere and, hence, decreases
the amplitude IAB below its noninteracting value IAB

�0� . At the
same time Coulomb blockade effect—although yielding an
additional suppression of IAB—remains weak in metallic
quantum dots and can be neglected as compared to the domi-
nating effect of electron dephasing. It is also important to
emphasize that in the course of our analysis we employed
only one significant approximation. We performed a regular
expansion of the current in powers of the tunneling conduc-
tances up to second-order terms �fourth-order terms in the
tunneling matrix elements�. At the same time the effect of
electron-electron interactions on AB oscillations in our sys-
tem was treated nonperturbatively to all orders and essen-
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FIG. 3. �Color online� The ratio IAB / IAB
�0� versus temperature at

different values of dimensionless conductance g.
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FIG. 4. �Color online� The ratio IAB / IAB
�0� as a function of dimen-

sionless conductance g at T=0 and 
D /
RC=10.
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tially exactly.
Note that one could be tempted to interpret the suppres-

sion of IAB at T=0 just as a result of a simple renormaliza-
tion effect by electron-electron interactions which is not re-
lated to dephasing. It is important to stress that—unlike, e.g.,
in the case of the interaction correction for single quantum
dots14,15—here such interpretation would not be appropriate.
The fundamental reason is that the interaction of an electron
with an effective environment �produced by other electrons�
effectively breaks down the time-reversal symmetry and,
hence, causes both dissipation and dephasing for interacting
electrons down to T=0.13 In this respect it is also important
to point out a deep relation between interaction-induced elec-
tron decoherence and the P�E� theory6,7 which we already
emphasized elsewhere4,5,8 and which is also evident from our
present results. Similarly as in Refs. 4 and 5 one can also
introduce the electron dephasing time in our problem and
demonstrate that at T→0 it saturates to a finite value in
agreement with available experimental observations.16–18 We
believe that the quantum dot rings considered here can be
directly used for further experimental investigations of quan-
tum coherence of interacting electrons in nanoscale conduc-
tors at low temperatures. We also note that our model can
possibly be applied to analyze the behavior of recently fab-
ricated self-assembled quantum rings19 where the AB oscil-
lations have been observed by means of magnetization ex-
periments.
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APPENDIX A: AVERAGING OVER DISORDER

Let us consider the following disorder averages of the
product for retarded and advanced Green’s functions for one
of the quantum dots:

Xd�x1,x2;�� = 	GR�x1,x2;��GA�x2,x1;� − ���d

− 	GR�x1,x2;���d	GA�x2,x1;� − ���d,

�A1�

Xc�x1,x2;�� = 	GR�x1,x2;��GA�x1,x2;� − ���d

− 	GR�x1,x2;���d	GA�x1,x2;� − ���d,

�A2�

Xk�x1,x2;�� = 	GR�x1,x1;��GA�x2,x2;� − ���d

− 	GR�x1,x1;���d	GA�x2,x2;� − ���d,

�A3�

where

GR�A��x1t1;x2t2� =� d�

2�
e−i��t1−t2�GR�A��x1,x2;�� .

�A4�

In order to evaluate the above averages we will employ the
standard diagram technique for noninteracting electrons in

disordered systems.20 The essential elements here are the so-
called diffuson and Cooperon ladders depicted in Fig. 5,
where we also define vertices �d�x1 ,x2 ;�� and �c�x1 ,x2 ;��.
In the presence of time-reversal symmetry and in the limit of
low momenta and frequencies, these vertices obey a diffu-
sionlike equation:

�− i� − D�x2

2 ��d�c��x1,x2;�� =
1

2�N
e
2��x1 − x2� . �A5�

Here D=vFl /3 and 
e= l /vF are, respectively, the diffusion
coefficient and the electron elastic mean free time. With the
aid of the above vertices one can define the diffuson and the
Cooperon, respectively, as

D�t;x1,x2� = 2�N
e
2� d�

2�
e−i�t�d�x1,x2;�� , �A6�

C�t;x1,x2� = 2�N
e
2� d�

2�
e−i�t�c�x1,x2;�� . �A7�

In the absence of the magnetic field they obey the diffusion
equations

��t − D�x2

2 �D�t;x1,x2� = ��x1 − x2���t� , �A8�

��t − D�x2

2 �C�t;x1,x2� = ��x1 − x2���t� �A9�

with appropriate boundary conditions.
Evaluating the diagrams for Xd�x1 ,x2 ;�� depicted in Fig.

5 after some algebra we arrive at the following result:

Xd�x1,x2;�� = �2�N
e�2�d�x1,x2;�� + �2�N
e�2�2�
x1 − x2
�

��c�x1 + x2

2
,
x1 + x2

2
;�� , �A10�

where

��
x1 − x2
� =
1

2�N
e
� dx	GR�x1,x;���d	GA�x,x2;���d.

�A11�

In the case of 3d systems we find ��r�=e−r/2l sin kFr /kFr.
The expression for Xc�x1 ,x2 ;�� is derived analogously.

We find

(b)(a) (c)

FIG. 5. Diagrammatic representation for vertices �d�x1 ,x2 ;��
and �c�x1 ,x2 ;�� and for averages Xd�x1 ,x2 ;�� and Xc�x1 ,x2 ;��.
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Xc�x1,x2;�� = �2�N
e�2�c�x1,x2;�� + �2�N
e�2�2�
x1 − x2
�

��d�x1 + x2

2
,
x1 + x2

2
;�� . �A12�

Combining Eqs. �A1�, �A2�, �A4�, �A6�, and �A7� with Eqs.
�A10�–�A12� we arrive at Eq. �25�.

Note that the average Xk�x1 ,x2 ;�� �Eq. �A3�� is omitted in
Eq. �25� since this average turns out to be parametrically
small as compared to both Xd�x1 ,x2 ;�� and Xc�x1 ,x2 ;��. In
order to demonstrate this fact it is necessary to evaluate the
diagrams for Xk�x1 ,x2 ;�� depicted in Fig. 6. Proceeding as
above we get

Xk�x1,x2;�� = �2�N
e�2�2�
x1 − x2
�

���d�x1 + x2

2
,
x1 + x2

2
;��

+ �c�x1 + x2

2
,
x1 + x2

2
;���

+ �2�N
e
2�2��d

2�x1,x2;�� + �c
2�x1,x2;��� .

�A13�

The first term in this equation clearly vanishes for 
x1−x2

� l. Here we assume that the size of both the dots and the
contacts is large as compared to the electron mean free path
l. Provided the typical contact size is on the same order as
that of the dots, the latter condition implies l�vF
D. If, how-
ever, the contact size is much smaller than that of the dots
this condition becomes pFl��Nch, where Nch is the effective
number of conducting channels in the contact. In this case
both the diffuson and the Cooperon do not depend on coor-
dinates and are defined by Eq. �42�. Then one finds

�d�c���� = �2�N
eV�− i� + 1/
D��−1.

Substituting this result into Eq. �A13� we get Xk�t�
�V−2��t�te−t/
D. Comparing this expression with that for
Xd�c��t��2�NV−1��t�e−t/
D at times t�
D, we obtain

Xk/Xd�c� � 
D/�NV� � 
D� � 1/g � 1. �A14�

This estimate demonstrates that the average Xk �Eq. �A3��
can be safely disregarded in Eq. �25� for the problem under
consideration.

APPENDIX B: AVERAGING OVER FLUCTUATING
PHASES

Substituting action �26� into Eq. �29� one expresses the
current �I��� as a combination of different phase averages
evaluated with the total action S��+ ,�−�. As we already ar-
gued above, in metallic limit �1� all these averages are essen-
tially Gaussian and, hence, can be easily performed. For the
sake of completeness, below we present the corresponding
results:

	ei��+�t2�−�+�t3�+�+�t4�−�+�t1�+�−�t1�/2+�−�t2�/2+�−�t3�/2+�−�t4�/2��

= e−F�t1−t2�−F�t1−t4�−F�t2−t3�−F�t3−t4�+F�t1−t3�+F�t2−t4�

� e−iK�t1−t2�−iK�
t1−t3
�−iK�t1−t4�+iK�t2−t3�+iK�
t2−t4
�−iK�t3−t4�,

�B1�

	ei��+�t2�−�+�t3�+�+�t4�−�+�t1�+�−�t1�/2+�−�t2�/2+�−�t3�/2−�−�t4�/2��

= e−F�t1−t2�−F�t1−t4�−F�t2−t3�−F�t3−t4�+F�t1−t3�+F�t2−t4�

� e−iK�t1−t2�−iK�
t1−t3
�−iK�
t1−t4
�+iK�t2−t3�−iK�t2−t4�+iK�
t3−t4
�,

�B2�

	ei��+�t2�−�+�t3�+�+�t4�−�+�t1�+�−�t1�/2+�−�t2�/2−�−�t3�/2+�−�t4�/2��

= e−F�t1−t2�−F�t1−t4�−F�t2−t3�−F�t3−t4�+F�t1−t3�+F�t2−t4�

� e−iK�t1−t2�+iK�t1−t3�−iK�t1−t4�−iK�
t2−t3
�+iK�
t2−t4
�−iK�
t3−t4
�,

�B3�

	ei��+�t2�−�+�t3�+�+�t4�−�+�t1�+�+�−�t1�/2�−�−�t2�/2+�−�t3�/2−�−�t4�/2��

= e−F�t1−t2�−F�t1−t4�−F�t2−t3�−F�t3−t4�+F�t1−t3�+F�t2−t4�

� e−iK�t1−t2�−iK�
t1−t3
�+iK�
t1−t4
�+iK�
t2−t3
�−iK�
t2−t4
�+iK�
t3−t4
�,

�B4�

	ei��+�t2�−�+�t3�+�+�t4�−�+�t1�+�−�−�t1�/2�+�−�t2�/2−�−�t3�/2+�−�t4�/2��

= e−F�t1−t2�−F�t1−t4�−F�t2−t3�−F�t3−t4�+F�t1−t3�+F�t2−t4�

� e−iK�
t1−t2
�+iK�
t1−t3
�−iK�
t1−t4
�−iK�
t2−t3
�+iK�
t2−t4
�−iK�
t3−t4
�,

�B5�

	ei��+�t2�−�+�t3�+�+�t4�−�+�t1�+�−�t1�/2+�−�t2�/2−�−�t3�/2−�−�t4�/2��

= e−F�t1−t2�−F�t1−t4�−F�t2−t3�−F�t3−t4�+F�t1−t3�+F�t2−t4�

� e−iK�t1−t2�+iK�t1−t3�+iK�
t1−t4
�+iK�
t2−t3
�−iK�
t2−t4
�+iK�
t3−t4
�.

�B6�

Note that for arbitrary metallic conductors gL,R�1 all these
equations are accurate down to exponentially small energies

(b)(a)

FIG. 6. Diagrams which define the average Xk�x1 ,x2 ;��.
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�set by the so-called renormalized charging energy10,11 which
is of little importance for us here�, and in the particular limit
of fully open left and right barriers Eqs. �B1�–�B6� become
exact.12 Thus, combining Eqs. �B1�–�B6� with Eqs. �26�,
�29�, �37�, and �38� we exactly account for the effect of
electron-electron interactions on the amplitude of AB oscil-
lations in the system under consideration.

It is useful to observe that in order to quantitatively de-
scribe this effect in the metallic limit g�1, one can totally
neglect all the functions K�t� in all Eqs. �B1�–�B6�. This is

because these functions remain much smaller than 1 at all
times �cf. Eq. �38�� and, hence, can only cause a weak
��1 /g� Coulomb correction to IAB which further slightly
decreases the amplitude of AB oscillations. The origin of this
Coulomb correction is exactly the same as that identified and
discussed in the weak localization problem.4,5 Thus, no ad-
ditional discussion of this point is necessary here. Substitut-
ing unity instead of all the exponents in Eqs. �B1�–�B6� con-
taining K functions and keeping all F functions in the
exponent, one easily arrives at Eq. �39�.
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